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Abstract
We study the diagonalization problem of certain Hofstadter-type models
through the algebraic Bethe ansatz equation by the algebraic geometry method.
When the spectral variables lie on a rational curve, we obtain the complete
and explicit solutions for models with a rational magnetic flux, and discuss
the Bethe equation of their thermodynamic flux limit. The algebraic geometry
properties of the Bethe equation on high genus algebraic curves are investigated
in accordance with physical considerations of the Hofstadter model.

PACS numbers: 02.10.Rn, 03.65.Fd, 5.30, 75.10.Jm

1. Introduction

The Hofstadter Hamiltonian is defined by

HHof = µ(αU + α−1U−1) + ν(βV + β−1V −1) (1)

where U,V are unitary operators satisfying the Weyl commutation relation for an absolute
value 1 complex number ω,UV = ωVU , and α, β,µ, ν are parameters with |α| = |β| =
1, µ, ν ∈ R. For a primitive Nth root of unity ω (=e2π

√−1�), i.e. the phase factor � = P/N
with P relatively prime to N, one may assume the Nth power identity ofU,V : UN = V N = 1.
There are several physical interpretations for the Hofstadter model, especially in solid state
physics. A prominent one is to consider it as a tight-binding approximation for electrons
bound to atomic sites in a two-dimensional crystal and in a strong external magnetic field.
The history of the Hofstadter model can be traced back to the work of Peierls [20] on Bloch
electrons in metals in the presence of a constant external magnetic field. By the pioneering
works in the 1950s and 1960s [1, 10, 14, 19, 25], the role of magnetic translations was found
3 Supported in part by the NSC grant of Taiwan.
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for the Hamiltonian (1), where the Weyl pair of operators, αU and βV, is a discrete version
of magnetic translations in the x, y directions, with the phase � of their commutation factor
ω representing the magnetic flux (per plaquette), and µ, ν are the hopping amplitudes of
the system. Subsequently, a systematic study of this 2D lattice model had begun. With the
discovery of quantum Hall effects, a large number of interesting and important theoretical
papers on Hamiltonians of the Hofstadter type appeared in the 1980s for the quantum
mechanical interpretation of the Hall conductivity plateaus (see, e.g., [13] and references
therein). In 1976, Hofstadter [16] found the butterfly figure of the spectral band versus the
magnetic flux, in which a beautiful fractal picture is exhibited. A detailed study of the model
and other Hofstadter-type models began thereafter on the explanation of the fractal structure
through various mathematical approaches, such as the semiclassical approximation, WKB-
analysis on the difference equation, non-commutative geometry and others [2, 7, 8, 11, 15, 24].
A pedagogical account of this important aspect can be found in a vast literature (e.g. [6, 21]
and references therein).

On the other hand, motivated by the work of Wiegmann and Zabrodin [23] on the
appearance of quantum Uq(sl2) symmetry in problems of magnetic translation, Faddeev and
Kashaev [12] pursued the diagonalization problem on the following type of Hamiltonian by
the quantum transfer matrix method developed by the Leningrad school in the early 1980s
(see, for instance, [22]):

HFK = µ(αU + α−1U−1) + ν(βV + β−1V −1) + ρ(γW + γ−1W−1)

where U,V,W are unitary operators with the Weyl commutation relations and the Nth power
identity property, UV = ωVU,VW = ωWV,WU = ωUW ;UN = V N = WN = 1. With
ρ = 0 in HFK, one has the Hofstadter Hamiltonian (1) with a rational flux. Though the
physical content of the extended Hamiltonian HFK with one more added operator W has not
yet been clarified, this general formulation will provide a nice setting for the study of this
kind of Hofstadter-type Hamiltonian by the quantum inverse scattering method. With the
solution of the Bethe ansatz equation under a certain postulated degree condition (see (5.26)
of [12]), the energy expression of (1) obtained in [23] was reproduced in the ρ = 0 limit
computation. Furthermore, a general framework for calculating spectra of the Hamiltonian
through the six-vertex model by the algebraic Bethe ansatz method was presented in [12].
In this approach, the Bethe ansatz equation is formulated through the Baxter vector4 [3, 5],
visualized on a ‘spectral’ curve associated with the corresponding Hofstadter-type model.
In general, the spectral curve is a Riemann surface with a very high genus. Thus here the
Bethe equation can be viewed as a version of Baxter’s T-Q relation [3] on a high genus
spectral curve. The method relies on a special local monodromy solution of the Yang–Baxter
equation for the six-vertex R-matrix. This solution also appeared in the study of chiral Potts
model [4]. For a finite size L, the trace of the L-monodromy matrix gives rise to the transfer

matrix acting on the quantum space
L⊗ CN , where N is the order of the rational flux. The

transfer matrix is composed of a set of commuting operators, one of which is a Hofstadter-
like Hamiltonian. For the physical consideration, the size L is kept to be a fixed number.
While motivated by the Hofstadter butterfly spectral figure, the ‘thermodynamic’ limit will
be treated in the manner of the rational flux’s order N tending to infinity. This process is a
different kind of limiting procedure from many in quantum integrable systems, such as the
XYZ-spin chain or its degenerated forms. For the study of models in this paper, we are mainly
concerned with the problem of diagonalizing the transfer matrix of size L = 3 (see [12], or
sections 6 and 7 of the paper). The Bethe ansatz equations of the Hofstadter-like Hamiltonians

4 It is also called ‘Baxter vacuum state’ in other literature. Here we follow the terminology used in [12].
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arising in such manner were clearly proposed in [12], and the principle could be equally
applied to more general, possibly interesting, models. However, the explicit solutions and
their qualitative nature are not yet known, even in the situation when the spectral curve
is a rational one. The aim of this paper is to show that the algebraic geometry method
could provide an effective tool for a thorough investigation into the mathematical structure
of the Bethe equation along the line of the quantum transfer matrix scheme in [12]. In this
work, we obtain the complete solutions of the Bethe equation for models with a rational
spectral curve for L � 3, among which a special kind of Hofstadter-type Hamiltonian HFK

is treated. We present a detailed and rigorous mathematical derivation of these solutions of
Bethe ansatz equations, including that in [12], and further expand it to all the other sectors.
Both the qualitative and quantitative properties of the solutions are studied thoroughly. With
the understanding of Bethe solutions for these Hofstadter-like models of the rational flux, we
apply the thermodynamic process which enables us to propose the Bethe equation for a generic
flux with the desirable solutions from both mathematical and physical considerations. The
analysis we make on the solution of the model via the Bethe ansatz method has clearly revealed
the algebraic geometry character of the Bethe equation. We adopt such an interpretation in
approaching the diagonalization problem of certain quantum integrable models. Accordingly,
the Bethe ansatz method for the Hofstadter model (1) is formulated along this scheme,
and the qualitative nature of the Bethe solutions is obtained through the approach of algebraic
curve theory.

This paper is organized as follows. In section 2, we outline the concept of the Baxter vector,
a key ingredient for the study of the Bethe (ansatz) equation throughout this work. In order
to gain conceptual clarity, we shall present the subject from the algebraic geometry aspect. In
section 3, we first recall some results in [12] relevant to our further discussion, fix notations on
the transfer matrix and Bethe equation, then derive some general qualitative properties about
eigenvalues of the transform matrix. In the next four sections, we shall consider the case
where the spectral data lie on a rational curve, and perform the mathematical derivation of the
answer, along with the discussion of their physical applications. In section 4, we briefly review
the basic procedure of limit reduction to a rational spectral curve, that originally appeared in
[12], and present an explicit form of Baxter vector, which will be used in further discussions.
We present the complete solutions of the Bethe equations of all sectors for L � 3 in section 5.
In section 6, we explain the ‘degeneracy’ relations between the Bethe solutions and the
eigenspaces in the quantum space of the transfer matrix. We also mention the relationship
between our Bethe solutions and some known results by using the Bethe ansatz method in
the literature, and indicate the difference of our approach to the Bethe equation with that of
the usual Bethe-ansatz-type technique through certain non-physical solutions obtained by the
latter method. In section 7, we will address the ‘thermodynamic’ limit problem in the sense
that N tends to ∞, and discuss the Bethe equation for those Hofstadter-like Hamiltonians
that appeared previously in the context of section 5, but with a generic q. In section 8, we
study the Hofstadter Hamiltonian (1) by starting from the format in [12]. Then we go through
an algebraic geometry analysis of the high genus spectral curve in which solutions of the
Bethe equation are represented, and the connection of the spectral curves to elliptic curves
is then clarified. We obtain a primary understanding of Bethe solutions through the spectral
curve and their relation with the Heisenberg algebra. We end with the concluding remarks in
section 9 with a discussion of the directions of our further enquiry.

Convention: in this paper, R,C will denote the field of real, complex numbers respectively,

and Z the ring of integers. For positive integers N,n, we will denote by
n⊗ CN the tensor

product of n-copies of the complex N-dimensional vector space CN , and by ZN the quotient
ring Z/NZ.
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2. Algebraic geometry preliminary and Baxter vector

In this paper, we shall denote by ω a primitive Nth root of unity, and q = ω
1
2 with

qN = (−1)N+1, in particular for odd N, q = ω
N+1

2 . Let Z,X be two operators satisfying
the Weyl commutation relation with the Nth power identity,

ZX = ωXZ ZN = XN = I.
The algebra generated by Z,X is called the Weyl algebra, in which the element ZX will be
denoted by Y := ZX. The following relations hold:

XY = ω−1YX YZ = ω−1ZY YN = (−1)N−1.

The canonical irreducible representation of the Weyl algebra is given by the following
expressions on the N-dimensional space CN :

Z : v �→ Z(v) Z(v)k = q2kvk

X : v �→ X(v) X(v)k = vk−1

Y : v �→ Y (v) Y (v)k = q2kvk−1.

(2)

Here a vector v of CN is represented by a sequence of coordinates, v = (vk)k∈Z, with the
N-periodic condition, vk = vk+N . Hence one can consider the index k as an element of ZN in
what follows, if no confusion arises. Denote by |k〉 the standard basis of CN , by 〈k| the dual
basis of CN∗ for k ∈ ZN . The kth component of a vector v of CN is given by vk = 〈k|v〉.
In the Weyl algebra, we shall consider only the vector subspace spanned by X,Y,Z and the
identity I, in which we denote the non-zero operator as

ϕα,β,γ,δ := αY − βX − γZ + δI : CN −→ CN .

The kernel of the above operator, Ker(ϕα,β,γ,δ), depends only on the ratio of the coefficients,
i.e. the element [α, β, γ, δ] in the projective 3-space P3. The non-triviality of Ker(ϕα,β,γ,δ)
defines a hypersurface of P3,

F := {[α, β, γ, δ] ∈ P3 | Ker(ϕα,β,γ,δ) 
= 0}.
In fact, one has the defining equation of F as follows:

Lemma 1. The surface F is defined by the equation

F : αN + δN = βN + γ N [α, β, γ, δ] ∈ P3.

Furthermore for [α, β, γ, δ] ∈ F,Ker(ϕα,β,γ,δ) is a one-dimensional subspace of CN

generated by a vector v = (vm) with the ratios vm : vm−1 = (αωm − β) : (γωm − δ).
Proof. For v ∈ CN , it is obvious that the criterion of v in Ker(ϕα,β,γ,δ) is described by the
above ratio relations of vm. For a non-zero vector v of CN , the periodic relation vm = vm+N

for a non-zero component vm gives rise to the equation of F . �

Let v be a basis of Ker(ϕα,β,γ,δ) for [α, β, γ, δ] ∈ F . Note that there are N2 (projective)
lines in F , defined by αN − βN = 0, equivalently, γ N − δN = 0, which are labelled by
P1
j,k := {αωj − β = γ − δωk = 0} for j, k ∈ ZN . Outside these lines, the components of v

are all non-zero. For elements in P1
j,k, one can set v = |k〉 at [0, 0, ωk, 1], and v = |j − 1〉 at

[1, ωj , 0, 0]; while for the rest of the elements, the indices in ZN with the non-zero components
of v form a chain from k increasing to j − 1.

For future purposes, we introduce a family of non-homogenous representations of the
surface F , depending on the parameter h = [a, b, c, d] ∈ P3,

α = ξ ′a β = xb γ = −ξ ′ξxc δ = −ξd
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where (x, ξ, ξ ′) ∈ C3 satisfies the equation

Sh : ξ ′NaN − xNbN = (−ξ)N(xNξ ′NcN − dN).
For a fixed h ∈ P3, the operator ϕα,β,γ,δ corresponding to (x, ξ, ξ ′) becomes

F(x, ξ, ξ ′)(=F(x, ξ, ξ ′; h)) := ξ ′aY − xbX + ξ ′ξxcZ − ξdI (3)

and we have

F(x, ξ − 1, ξ ′) = F(x, ξ, ξ ′)− ξ ′xcZ + dI

F (x, ξ, ξ ′ − 1) = F(x, ξ, ξ ′)− ξxcZ − aY.
For an element p = (x, ξ, ξ ′) of Sh, we shall denote |p〉 as the basis of Ker(ϕξ ′a,xb,−ξ ′ξxc,−ξd )
with 〈0|p〉 = 1, equivalently, |p〉 is the vector of CN defined by

〈0|p〉 = 1
〈m|p〉
〈m− 1|p〉 =

ξ ′aωm − xb
−ξ(ξ ′xcωm − d) .

We shall call |p〉 the Baxter vector associated with p ∈ Sh [3, 5, 12]. Then

F(x, ξ, ξ ′)|p〉 = �0
F(x, ξ − 1, ξ ′; h)|p〉 = |τ−p〉−(p) (4)

F(x, ξ, ξ ′ − 1, ; h)|p〉 = −|τ+p〉+(p)

where± are the following (rational) functions of Sh:

−(x, ξ, ξ ′) = d − xξ ′c +(x, ξ, ξ
′) = ξ(ad − x2bc)

ξ ′a − xb
and τ± are the automorphisms of Sh defined by τ±(x, ξ, ξ ′) = (q±1x, q−1ξ, q−1ξ ′).

3. The transfer matrix and the Bethe equation

As in [12], it is known that the following L-operator5 with the operator-valued entries acting
on the quantum space CN,

Lh(x) =
(
aY xbX

xcZ d

)
x ∈ C

possesses the intertwining property of the Yang–Baxter relation,

R(x/x ′)(Lh(x)
⊗
aux

1)(1
⊗
aux

Lh(x
′)) = (1

⊗
aux

Lh(x
′))(Lh(x)

⊗
aux

1)R(x/x ′) (5)

where ‘aux’ will always indicate an operation taking on the auxiliary space C2, R(x) is the
matrix of a 2-tensor of the auxiliary space with the following numerical expression:

R(x) =


xω − x−1 0 0 0

0 ω(x − x−1) ω − 1 0
0 ω − 1 x − x−1 0
0 0 0 xω − x−1

 .
By performing the matrix product on auxiliary spaces and the tensor product of quantum
spaces, one has the L-operator associated with an element �h = (h0, . . . , hL−1) ∈ (P3)L,

L�h(x) =
L−1⊗
j=0

Lhj (x) := Lh0(x)⊗ Lh1(x)⊗ · · · ⊗ LhL−1(x) (6)

5 The conventions in this paper are different from those used in [12] where X, Y correspond to our Z,X here.
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which again satisfies relation (5). The entries of L�h(x) are operators of the quantum space
L⊗ CN , and its trace defines the transfer matrix

T�h(x) = Traux(L�h(x)).

Then the commutation relation holds,

[T�h(x), T�h(x
′)] = 0 x, x ′ ∈ C.

The transfer matrix T�h(x) can also be computed by changing Lhj to L̃hj via a gauge
transformation in the following manner:

L̃hj (x) = AjLhj (x)A−1
j+1 AL := A0 0 � j � L− 1. (7)

Set

Aj =
(

1 ξj − 1
1 ξj

)
and denote the corresponding L̃hj (x) by L̃hj (x, ξj , ξj+1). With Fh(x, ξ, ξ ′) of (3), we have

L̃hj (x, ξj , ξj+1) =
(
Fhj (x, ξj − 1, ξj+1) −Fhj (x, ξj − 1, ξj+1 − 1)
Fhj (x, ξj , ξj+1) −Fhj (x, ξj , ξj+1 − 1)

)
and

T�h(x) = Traux(L̃�h(x, �ξ)) �ξ := (ξ0, . . . , ξL−1)

where

L̃�h(x, �ξ) :=
L−1⊗
j=0

L̃hj (x, ξj , ξj+1) =
(
L̃�h;1,1(x, �ξ) L̃�h;1,2(x, �ξ)
L̃�h;2,1(x, �ξ) L̃�h;2,2(x, �ξ)

)
ξL := ξ0.

The existence of Baxter vectors |pj 〉, pj := (x, ξj , ξj+1) ∈ Shj , for all j with the condition
ξL = ξ0, imposes the constraint of elements (p0, . . . , pL−1) on the product of surfaces,∏L−1
j=0 Shj , which form a curve C�h in

∏L−1
j=0 Shj with the coordinates (x, ξ0, . . . , ξL−1) satisfying

the relations

C�h : ξNj = (−1)N
ξNj+1a

N
j − xNbNj

ξNj+1x
NcNj − dNj

j = 0, . . . , L− 1. (8)

For p = (p0, . . . , pL−1) ∈ C�h, the Baxter vector |p〉 is now defined by

|p〉 := |p0〉 ⊗ · · · ⊗ |pL−1〉 ∈
L⊗ CN .

By the definition of L̃�h;j,k, the Baxter vector of C�h shares the following relations to entries of

L̃�h similar to those for L̃�h(x, �ξ) in (4),

L̃�h;1,1(x, �ξ)|p〉 = |τ−p〉−(p) L̃�h;2,2(x, �ξ)|p〉 = |τ+p〉+(p) L̃�h;2,1(x, �ξ)|p〉 = 0

where±, τ± are functions and automorphisms of C�h defined by

−(x, ξ0, . . . , ξL−1) =
L−1∏
j=0

(dj − xξj+1cj )

+(x, ξ0, . . . , ξL−1) =
L−1∏
j=0

ξj (ajdj − x2bjcj )

ξj+1aj − xbj (9)

τ± : (x, ξ0, . . . , ξL−1) �→ (q±1x, q−1ξ0, . . . , q
−1ξL−1).
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Then the important relation of the transfer matrix on the Baxter vector of the curve C�h follows:

T�h(x)|p〉 = |τ−p〉−(p) + |τ+p〉+(p) for p ∈ C�h. (10)

As T�h(x) are commuting operators for x ∈ C, a common eigenvector 〈ϕ| is a constant vector

of
L⊗ CN with an eigenvalue �(x) ∈ C[x]. Defining the function Q(p) = 〈ϕ|p〉 of C�h then

satisfies the following Bethe equation:

�(x)Q(p) = Q(τ−(p))−(p) +Q(τ+(p))+(p) for p ∈ C�h. (11)

In the rest of this paper we study in detail the above Bethe equation. Before that, we first
derive certain functional properties of the eigenvalue�(x).

Lemma 2. With the entries L�h;i,j (x) of L�h(x) in (6), the following properties hold:

(i) under the interchange of operators, ajY ↔ dj , bjX ↔ cjZ for all j , we have the
symmetries among L�h;i,j (x)s, L�h;1,1(x)↔ L�h;2,2(x), L�h;1,2(x)↔ L�h;2,1(x);

(ii) the polynomialL�h;i,j (x) is an even or odd function with the parity (−1)i+j , and its degree

is equal to 2
[L+1−δi,j

2

]− 1 + δi,j .

Proof. We apply the gauge transformation (7) with Aj = Aj+1 for all j . When

Aj =
(

0 1
1 0

)
one obtains the interchange of entries of Lhj (x), hence follows (I). For

Aj =
(

1 0
0 −1

)
the corresponding L̃hj (x) is equal to Lhj (−x), which implies the parity of L�h;i,j (x). The
determination of the degree of L�h;i,j (x) can be obtained by certain suitable choices of the
values of hj . �

From the definition of T�h(x),�(x), one can easily obtain the following result.

Proposition 1. The transform matrix T�h(x) is an operator-coefficient even polynomial of x
with degree 2

[
L
2

]
, which is invariant under the substitutions in lemma 2 (i). The constant term

of T�h(x) is given by

T0 := T�h(0) =
L−1∏
j=0

aj

L⊗
Y +

L−1∏
j=0

dj . (12)

Subsequently, the polynomial �(x) in (11) is an even function of degree �2
[
L
2

]
with

�(0) = ql∏L−1
j=0 aj +

∏L−1
j=0 dj for some l.

From the above proposition, we have T�h(x) =
∑[ L2 ]

j=0 T2j x
2j with T0 given by (12). With

a further study of the expressions of T2j , one can show that they form a commuting family
of operators, whose proof we will not present here. Instead, as an illustration of this fact
and also for further use in this paper, we list below the explicit form of T2 for L = 2, 3 in
T�h(x) = T0 + x2T2, where the commutation relation of T2 and T0 is easily verified:

L = 2 T2 = b0c1X ⊗ Z + c0b1Z ⊗X
L = 3 T2 = b0c1a2X ⊗ Z ⊗ Y + a0b1c2Y ⊗X ⊗ Z + c0a1b2Z ⊗ Y ⊗X (13)

+ c0b1d2Z ⊗X ⊗ I + d0c1b2I ⊗ Z ⊗X + b0d1c2X ⊗ I ⊗ Z.
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The above T2 for L = 3 can be written as the Hofstadter-type Hamiltonian HFK of Faddeev
and Kashaev described in section 1 (for the exact identification, see [12])6. In equation (11),
Q(p) is a rational function of C�h with poles. As the functions of C�h, ξNj+1x

NcNj − dNj and(
ξNj+1a

N
j − xNbNj

)
(−ξj )−N are the same, by the description of the Baxter vector, the poles of

Q(p) are contained in the divisor of C�h defined by
L−1∏
j=0

(
ξNj x

NcNj − dNj
) = 0.

Hence the understanding of the Bethe solutions of (11) relies heavily on the function theory of
C�h; the algebraic geometry of the curve will play a key role in the complexity of the problem.
We shall specify the spectral curves in further discussion. For our purpose, in the rest of this
paper we shall only consider the situation when N is an odd integer, and denote the integer[
N
2

]
by M:

N = 2M + 1.

4. The rational degenerated Bethe equation

For the next four sections, the spectral curve C�h will always be the rational curve under the
following assumption of degeneration:

aj = q−1dj bj = q−1cj for j = 0, . . . , L− 1. (14)

To make our presentation self-contained, we shall briefly review in this section the general
procedure of reducing the Bethe equation on C�h to a polynomial equation, that originally
appeared in [12], and present an explicit form of the Baxter vector which will be convenient
for further use. By replacing cj , dj by cj

dj
, 1, we may assume dj = 1 for all j . For the

convenience of mathematical discussion, also suitable for physical applications, we shall
assume that the parameters cj are all generic. The solutions for ξj in (8) are given by

ξN0 = · · · = ξNL−1 = ±1

which possess the structure of a finite Abelian group. Therefore C�h is the union of disjoint
copies of the x-(complex) line indexed by this finite group. Instead of working on the curve
C�h, the following τ±-invariant subset of C�h will be sufficient for our discussion of the Bethe
equation:

C := {(x, ξ0, . . . , ξL−1) | ξ0 = · · · = ξL−1 = ql, l ∈ ZN }.
The curve C will be identified with P1 × ZN :

C = P1 × ZN (x, ql, . . . , ql)←→ (x, l).

The Baxter vectors are now labelled by |x, l〉 = ⊗3
j=0|x, l〉j , where |x, l〉j ∈ CN is defined by

the relations

〈0|x, l〉j = 1
〈k|x, l〉j
〈k − 1|x, l〉j =

q2k−1
(
1− xcjq−l−2k

)(
1− xcjql+2k

) k ∈ ZN .

We shall use the bold letter k to denote a multi-index vector k = (k0, . . . , kL−1) with kj ∈ Z;
the square-length of k is defined by |k|2 :=∑L−1

j=0 k
2
j . The component-expression of the vector

|x, l〉 is given by

〈k|x, l〉 = q |k|2
L−1∏
j=0

kj∏
i=1

1− xcjq−l−2i

1− xcjql+2i
kj > 0. (15)

6 The operators X, Y,Z, S, T ,U in [12] correspond to Z,X, Y,U, V,W respectively in this paper.
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Equation (10) takes the form

T (x)|x, l〉 = |q−1x, l − 1〉−(x, l) + |qx, l − 1〉+(x, l) (16)

where± are given by

−(x, l) =
L−1∏
j=0

(
1− xcjql

)
+(x, l) =

L−1∏
j=0

1− x2c2
j

1− xcjq−l .

As in [12], we introduce the following two functions on the curve C:

f e(x, 2n)=
L−1∏
j=0

n∏
k=0

1−xcjq−2(n−k)

1− xcjq2(n−k) f o(x, 2n + 1)=
L−1∏
j=0

n∏
k=0

1− xcjq−1−2(n−k)

1− xcjq1+2(n−k)

(17)

by which we define the vectors

|x〉em =
N−1∑
n=0

|x, 2n〉f e(x, 2n)ωmn |x〉om =
N−1∑
n=0

|x, 2n + 1〉f o(x, 2n + 1)ωmn. (18)

By computation, the following relations hold for n ∈ ZN :
f e(x, 2n)

f o(q±1x, 2n− 1)
±(x, 2n) = ±(x, 0)

f o(x, 2n− 1)

f e(xq±1, 2n− 2)
±(x, 2n− 1) = ±(x,−1).

Then (16) becomes the system of equations,

T (x)|x〉〉m = |q−1x〉〉mD−m(x) + |qx〉〉mD+
m(x) m ∈ ZN

where

|x〉〉m =
(|x〉em, |x〉om) D±m(x) =

(
0 ±(x,−1)

ωm±(x, 0) 0

)
.

In what follows, it is convenient to use the notation of a shifted factorial:

(a; α)0 = 1 (a; α)n = (1− a)(1− aα) · · · (1− aαn−1) n ∈ Z>0.

From (15) and (17), we have

f e(x, 2n)〈k|x, 2n〉 = q |k|2
L−1∏
j=0

(
xcj ;ω−1

)
kj+n+1

(xcj ;ω)kj+n+1

f o(x, 2n + 1)〈k|x, 2n + 1〉 = q |k|2
L−1∏
j=0

(
xcjq

−1;ω−1
)
kj+n+1

(xcjq;ω)kj+n+1
.

Note that each ratio term on the right-hand side of the above is defined when the lower index
kj + n + 1 is positive; however, its value depends only on the class modular N. So we shall
use the same notation for an arbitrary integer index n by defining the value equal to that of
any positive representative of the class involved in ZN , and will keep this convention in what
follows. From (18), we have

〈k|x〉em = q |k|
2 ∑
n∈ZN

ωmn
L−1∏
j=0

(
xcj ;ω−1

)
kj+n+1

(xcj ;ω)kj+n+1

(19)

〈k|x〉om = q |k|
2
∑
n∈ZN

ωmn
L−1∏
j=0

(
xcjq

−1;ω−1
)
kj+n+1

(xcjq;ω)kj+n+1
.
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We proceed with the diagonalizing procedure on the matrixD±m(x) by a gauge transformation
using an invertible 2× 2 matrix Um(x):

|x〉〉m �→ |x〉m := |x〉〉mUm(x) D±m(x) �→ Um(q
±1x)−1D±m(x)Um(x).

We shall choose the matrix Um(x) of the form7

Um(x) =
(
q−mu(qx) u(qx)

u(x) −qmu(x)
)
.

Then the diagonalizable criterion of D±m(x) for all m is equivalent to the following equation
of u(x):

u(ωx)

u(x)
=

L−1∏
j=0

1− cjx
1− cj xq . (20)

Note that the right-hand side of the above form is equal to +(x,−1)
+(x,0)

, which is the same as
−(qx,−1)
−(qx,0)

. The resulting expression of D±m(x) becomes

D−m(x) = qm−(x,−1)

(
1 0
0 −1

)
D+
m(x) = qm+(x, 0)

(
1 0
0 −1

)
.

With the notation

|x〉m = (|x〉+m, |x〉−m) (Q+
m(x),Q

−
m(x)) = 〈ϕ|x〉m

one has

|x〉+m = |x〉emq−mu(qx) + |x〉omu(x) |x〉−m = |x〉emu(qx)− |x〉omqmu(x).
The Bethe equation (11) now takes the form

±q−m�(x)Q±m(x) =
L−1∏
j=0

(
1− xcjq−1)Q±m(xq−1) +

L−1∏
j=0

(1 + xcj )Q
±
m(xq). (21)

5. Solutions of the rational Bethe equation

In this section, we advance the discussion of the last section to obtain the explicit solutions of
the Bethe equation (21) forL � 3, from which a special case will be shown in the next section
to coincide with that in [12, 23].

Lemma 3. The general solutions of the rational function u(x) for (20) are given by

u(x) = R(xN)
L−1∏
j=0

(cjx;ω)−1
M+1

where R(xN) is a rational function of xN .

Proof. Note that the ratio of any two solutions of (20) is a rational function r(x) with the
relation r(ωx) = r(x), which is equivalent to r(x) = R(xN) for a rational function R(xN) of
xN . Therefore it suffices to show that

∏L−1
j=0 (cjx;ω)−1

M+1 is a solution of (20), which is easily
seen by q = ωM+1. �
7 The form of the gauge transformation matrix here is slightly different from that of (5.15) in [12] by rearrangement
of the entries. As we are not able to produce the required formulation through the expression in [12], we wonder if
there might be a misprint in it.



Algebraic geometry approach to the Bethe equation for Hofstadter-type models 5917

By the expressions of 〈k|x〉em, 〈k|x〉om in (19), in order to have the polynomial functions
of Q±m(x) in (21), we choose the following gauge function u(x) by setting R(xN) =∏L−1
j=0

(
1− xNcNj

)2
in lemma 3:

u(x) =
L−1∏
j=0

(
1− xNcNj

) (
xcjq; q2

)
M
. (22)

The polynomialQ±m(x) has the degree at most equal to that of u(x), which is (3M + 1)L. By
proposition 1, one requires the polynomial solutionsQ±m(x),�(x) of the Bethe equation (21)
with the constraints,

degQ±m(x) � (3M + 1)L

deg�(x) � 2

[
L

2

]
�(x) = �(−x) �(0) = ql + 1 for some l.

Remark. For another choice of gauge function u(x), only the function Q±m(x) differs
by a multiple of a certain rational function of xN , which has no effect as far as the Bethe
equation is concerned.

Lemma 4. Let q be a primitive Nth root of unity, k, l be integers with qk + ql ∈ R. Then
qk+l = 1.

Proof. By the odd property of N, 1 is the only real number among the Nth roots of unity. We
may assume that 1, qk, ql are three distinct numbers. The following conditions are equivalent:

qk + ql ∈ R ⇐⇒ qk − q−l ∈ R ⇐⇒ qk+l − 1 ∈ qlR.
By interchanging k and l in the above relations, one concludes that (qk+l − 1) ∈ qkR ∩ qlR.
By qk 
= ±ql, qkR ∩ qlR consists of only the zero element. Hence qk+l = 1. �

For the Bethe equation (21), one needs only to consider the plus part of the equation
because of the following result.

Proposition 2. For m ∈ ZN , we haveQ−m(x) = 0, |x〉−m = �0, and

|x〉+m = 2q−m|x〉emu(qx) = 2|x〉omu(x). (23)

Proof. LetQ−m(x) be a non-zero polynomial solution of (21) for some�(x)with�(0) = ql+1,
and write Q−m(x) = xrQ−∗m (x) with Q−∗m (0) 
= 0. By comparing the xr -coefficients of (21),
we have −q−m�(0)Q−∗m (0) = (q−r + qr)Q−∗m (0), hence

−q−m(1 + ql) = q−r + qr .

By lemma 4, ql = q2m, which implies that qr = −q±m, a contradiction to the odd property
of the integer N. Therefore the only solution Q−m(x) for the negative part of (21) is the trivial

one. SinceQ−m(x) is of the form 〈ϕ|x〉−m for an eigenvector 〈ϕ| of T (x) in
L⊗ CN∗, and all such

vectors 〈ϕ| form a basis of
L⊗ CN∗, hence |x〉−m = �0 for all m. Then follows relation (23). �

We now derive some general properties of the solutionsQ+
m(x) of (21).

Lemma 5. For a polynomial�(x) with �(0) = ql + 1, the necessary and sufficient condition
of �(x) for the existence of a non-zero polynomial solution Q+

m(x) of equation (21) with the
eigenvalue�(x) is given by the relation ql = q2m. In this situation, with Q+

m(x) = xrQ+∗
m (x)

andQ+∗
m (0) 
= 0, one has qr = q±m.
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Proof. Let Q+
m(x) be a non-zero solution of (21) and write Q+

m(x) = xrQ+∗
m (x) with

Q+∗
m (0) 
= 0. By the same argument as in proposition 2, we have

q−m(1 + ql) = q−r + qr

hence ql = q2m and qr = q±m by lemma 4. The ‘sufficient’ part of the statement remains to
be shown. For ql = q2m, by (19) and (23), one concludes that |x〉+m cannot be identically zero.
We claim that the solution Q+

m(x) in (21) has non-trivial solutions. Otherwise, this implies
that |x〉+m is always the zero vector for all x by the same argument as in proposition 2, hence a
contradiction. �

Proposition 3. Let m be an integer between 0 and M, andQ+
m(x),Q

+
N−m(x) solutions of (21)

form,N −m respectively which arise from the evaluation of eigenvectors 〈ϕ| of T�h(x) on the
Baxter vector. ThenQ+

m(x),Q
+
N−m(x) are elements in xm

∏L−1
j=0

(
1− xNcNj

)
C[x].

Proof. The divisibility of Q+
m(x),Q

+
N−m(x) by xm follows easily from lemma 5, so only the

factor
∏L−1
j=0

(
1 − xNcNj

)
remains to be verified. As Q+

l (x) is of the form 〈ϕ|x〉+l for some

vector 〈ϕ| in
L⊗ CN∗, and by (19) and (23), it suffices to show the following divisibility of

polynomials:
L−1∏
j=0

(xcj ;w)M+1 | u(qx)
L−1∏
j=0

(
xcj ;ω−1

)
kj+n+1

(xcj ;ω)kj+n+1

L−1∏
j=0

(xcjω
M+1;w)M | u(x)

L−1∏
j=0

(
xcjq

−1;ω−1
)
kj+n+1

(xcjq;ω)kj+n+1
.

By the form of u(x) in (22) and the relation qωM+1+j = ωj+1 for j ∈ Z, the above relations
are easily seen. �

For our purpose, the functions Q+
m(x) that we shall consider are only those arising from

eigenvectors of the transfer matrix, hence Q+
m(x) is in the form of proposition 3. For the rest

of this paper, the letter m will always denote an integer between 0 and M,

0 � m � M.

We shall conduct our discussion of the plus part of equation (21) for the sectors m,N − m
simultaneously by introducing the polynomials�m(x),Qm(x) via the relation�m(x), x

m

L−1∏
j=0

(
1− xNcNj

)
Qm(x)

 = (q−m�(x),Q+
m(x)

)
,
(
qm�(x),Q+

N−m(x)
)
. (24)

Then relations (21) for both the m and N −m sectors are reduced to the following:

�m(x)Qm(x) = q−m
L−1∏
j=0

(1− xcjq−1)Qm(xq
−1) + qm

L−1∏
j=0

(1 + xcj)Qm(xq) (25)

whereQm(x),�m(x) are polynomials with

degQm(x) � ML−m
deg�m(x) � 2

[
L

2

]
�m(x) = �m(−x) �(0) = qm + q−m.

The general mathematical problem will be the structure of the solution space of the Bethe
equation (25) for a given positive integer L. First, we derive a detailed answer of the Bethe
solutions for the simplest case L = 1.



Algebraic geometry approach to the Bethe equation for Hofstadter-type models 5919

L = 1. We have�m(x) = qm + q−m, and degQm(x) � M −m.

Theorem 1. The solutionsQm(x) of (25)L=1 form a one-dimensional vector space generated
by the following polynomial of degreeM −m:

Bm(x) := 1 +
∑
j�1

(
j∏
i=1

qm+i−1 − q−m−i
qm + q−m − q−m−i − qm+i

)
(xc0)

j . (26)

(Note that the coefficients in the above expression are zero for j > M −m.)

Proof. Write

Qm(x) =
M−m∑
j=0

βj(xc0)
j .

Then (25)L=1 is equivalent to the following system of equations of βj :

(qm + q−m − q−m−j − qm+j )βj = (qm+j−1 − q−m−j )βj−1 j ∈ Z�0 (27)

where βk is defined to be zero for k not between 0 and M − m. As the values of
qm + q−m − q−m−j − qm+j , q−m−j − qm+j−1 are all non-zero, the polynomial Qm(x) is
determined by β0 (or equivalently βM−m) through the recursive relations (27). With β0 = 1,
this provides the basis element Bm(x). �

Corollary 1. The vector space of all polynomial solutions of (25)L=1 (without the restriction
of the degree of Qm(x)) is C[xN ]Bm(x).

Proof. By using the fact

qm+j−1 − q−m−j = 0 ⇐⇒ j ≡ M −m + 1 (modN)

qm + q−m − qm+j − q−m−j = 0 ⇐⇒ j ≡ 0, N − 2m (modN)

and relation (27) for those j with M − m + 1 + lN < j � (l + 1)N (l ∈ Z�0), any solution∑
k�0 βj(c0x)

k of (25)L=1 must have βk = 0 except k ≡ 0, . . . ,M −m(modN), and hence
is an element of C[xN ]Bm(x) by theorem 1. �

For the Bethe equation (25) with L > 1, by the scaling of the variables,

x �→ λ−1x cj �→ λcj for λ ∈ C∗

we may assume that the xj -coefficients of polynomials, �m(x),Qm(x), are always
homogenous functions of c0, . . . , cL−1 with the degree j . As (25) is invariant under
permutations of cj , the coefficients of the polynomials of x involved in (25) depend only
on the elementary symmetric functions of cj ,

sj =
∑

i1<···<ij
ci1 · · · cij for j = 1, . . . , L.

We shall denote

Qm(x) =
d∑
j=0

αjx
j d := degQm(x) (�LM −m)

and define αj to be zero for j not between 0 and d. For the rest of this section, we shall only
consider the case L = 2, 3.

L = 2. We have only two elementary symmetric functions of cj :

s1 = c0 + c1 s2 = c0c1.
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Lemma 6. Let n be an odd positive integer, A an n × n matrix with the complex entries ai,j
satisfying the relations

ai,j = (−1)i+j+1an−j+1,n−i+1 for 1 � i, j � n.

Then A is a degenerated matrix.

Proof. Write n = 2h + 1. The determinant of A can be expressed by

det(A) =
∑
σ

sgn(σ )
n∏
i=1

ai,σ (i) =
∑
σ

sgn(σ )
n∏
i=1

(−1)i+σ (i)+1an−σ (i)+1,n−i+1

= sgn(σ0)(−1)h+1
∑
σ ′

sgn(σ ′)
n∏
j=1

aσ ′(j),j = sgn(σ0)(−1)h+1det(A)

where the indices σ, σ ′ run through all permutations of {1, . . . , n}, and σ0 is the one defined
by σ0(i) = n− i + 1. By sgn(σ0) = (−1)h, we have det(A) = 0. �

In equation (25)L=2,�m(x) is an even polynomial of degree �2, and degQm(x) � 2M −m.
By comparing the coefficients of the highest degree of x in (25), we have

�m(x) = (qm+d + q−m−d−2)x2s2 + qm + q−m.

For k ∈ Z, we define

vk = qk + q−k − qm − q−m
δk = (qk−1 − q−k)s1 (28)

uk = (qk−2 + q−k − qm+d − q−m−d−2)s2.

Then (25)L=2 is equivalent to the system of linear equations of αj ,

vm+j αj + δm+jαj−1 + um+j αj−2 = 0 j ∈ Z�0. (29)

In fact, the non-trivial relations in the above system are those for j between 1 and d + 1, hence
the matrix form of (29) is given by

δm+d+1 um+d+1 0 · · · 0 0
vm+d δm+d um+d · · · 0 0

0
. . .

. . .
. . .

...

...
. . .

. . .
. . .

. . . 0
...

. . . 0 vm+2 δm+2 um+2

0 · · · 0 vm+1 δm+1





αd

αd−1

...

...

...

α0


= �0. (30)

Theorem 2. Equation (25)L=2 has a non-trivial solution Qm(x) if and only if degQm(x) =
M −m +m′ for 0 � m′ � M . For each such m′, the eigenvalue�m(x) in (25)L=2 is equal to
�m,m′(x) := q 1

2 (qm
′−1 + q−m

′−2)x2s2 + qm + q−m, and the corresponding solutions of Qm(x)

form a one-dimensional space generated by a polynomialBm,m′ (x) of degreeM−m+m′ with
Bm,m′ (0) = 1. (Here q

1
2 := qM+1.)

Proof. Denote d = degQm(x). Among those vj of the entries of the square matrix (30),
there is at most one zero term which is given by vN−2m = 0. If Qm(0) = 0, this implies
that Qm(x) = xN−2mQ∗m(x) with Q∗m(0) 
= 0, and each coefficient of the polynomialQ∗m(x)
is expressed by a Q∗m(0)-multiple of a certain polynomial of c0, c1. By setting c1 = 0,
xN−2mQ∗m(x)Q

∗
m(0)

−1 gives rise to a solution of (25)L=1, which contradicts the conclusion
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of corollary 1. Therefore Qm(0) 
= 0. If d is less than M − m, again by setting c1 = 0,
the function Qm(x) gives rise to a solution of (25)L=1 of degree <M −m, a contradiction to
theorem 1. Hence d = M − m +m′ for 0 � m′ � M . It remains to be shown for each such
m′ that the solutionsQm(x) form a one-dimensional vector space. As any non-trivial solution
Qm(x) must haveQm(0) 
= 0, this implies the injectivity of the following linear functional of
the solution space:

Qm(x) �→ Qm(0) ∈ C.

So one needs only to show the existence of a non-trivial solution Qm(x), which is equivalent
to the degeneracy of the square matrix of size d + 1 on the left-hand side of (30). Write this
square matrix in the form(

A 0
C B

)
(31)

where C is a (d − 2m′)× (2m′ + 1) matrix, A,B are the tri-diagonal square matrices of size
2m′ + 1, d − 2m′ respectively. The explicit form of A is given by

A =



δM+1+m′ uM+1+m′ 0 · · · 0 0

vM+m′ δM+m′ uM+m′ 0
. . . 0

0 vM+m′−1 δM+m′−1 uM+m′−1
. . .

...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . . 0

...
. . . 0 vM+2−m′ δM+2−m′ uM+2−m′

0 · · · 0 vM+1−m′ δM+1−m


.

From (28), we have vj = vN−j , δj = −δN+1−j , uj = uN+2−j . This implies that matrix A
satisfies the condition of lemma 6, hence det(A) = 0. Therefore the square matrix (31) has a
zero determinant. �

Remark. From the above theorem, the following data are in one-to-one correspondence with
integersm,m′ between 0 and M:

(m,m′)←→ �m,m′ (x)←→ Bm,m′ (x).

The characterization of Bm,m′ (x) is given as a (unique) polynomial with degBm,m′ (x) =
M −m +m′ and Bm,m′ (0) = 1, whose coefficients αj satisfy equation (29) with

vk = qk + q−k − qm − q−m
δk = (qk−1 − q−k)s1 (32)

uk =
(
qk−2 + q−k − qm′− 1

2 − q−m′− 5
2

)
s2.

L = 3. There are three elementary symmetric functions of cj ,

s1 = c0 + c1 + c2 s2 = c0c1 + c1c2 + c2c0 s3 = c0c1c3.

A non-trivial solution Qm(x) of (25)L=3 has the degree d � 3M − m, and �m(x) is of
the form

�m(x) = λmx2 + qm + q−m. (33)
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Note that λm is a homogeneous function of cj of degree 2. For k ∈ Z, we define

wk = qk + q−k − qm − q−m
vk = (qk−1 − q−k)s1
δk = (qk−2 + q−k)s2
uk = (qk−3 − q−k)s3.

Equation (25)L=3 is equivalent to the system of linear equations of αj ,

wm+jαj + vm+j αj−1 + (δm+j − λm)αj−2 + um+j αj−3 = 0 j ∈ Z�0. (34)

The non-trivial relations of the above system are those for j between 1 and d + 3.

Lemma 7. Let Qm(x) be a non-trivial polynomial solution of (25)L=3 for some �m(x). Then
the degree of Qm(x) is equal to 3M −m with Qm(0) 
= 0.

Proof. First, we note that for j between m + 1 and 3M , the only possible wj with zero value
are given by

wN−m = wm+N = 0.

Let r be the zero multiplicity ofQm(x) at x = 0. IfQm(0) = 0, by (34) we have r = N − 2m
or N. The polynomial α−1

r Qm(x) with c1 = c2 = 0 is a non-trivial solution of (25)L=1 with
zero multiplicity r. By corollary 1, r must be equal to N and the degree of Qm(x) is at least
N +M −m, which contradicts our assumption, d � 3M −m. ThereforeQm(0) 
= 0. By the
relation of j = d + 3 in (34), we have qm+d = q−m−d−3, hence the only possible values of d
are M −m− 1 , 3M −m. If d = M −m− 1, by wj 
= 0 for m + 1 � j < M , the function
Qm(x) with c1 = c2 = 0 gives rise to a non-trivial solution of (25)L=1 with degree<M −m,
a contradiction to theorem 1. Therefore d = 3M −m. �

By the above lemma, the ‘eigenfunction’ Qm(x) for an eigenvalue �m(x) is unique up to a
non-zero constant, hence there is a one-to-one correspondence between the eigenvalues and
eigenstates of the Bethe equation (34)L=3 for a given m. By d = 3M − m, the (d + 3)th
relation in system (34) is redundant, hence the matrix form of (34) becomes

(
A− λm 0
C B

)
αd
...

...

α0

 = �0 d = 3M −m (35)

where A is the N ×N matrix,

A =



δ′N−1 u′N−1 0 · · · 0 0

v′N−2 δ′N−2 u′N−2 0
. . .

...

w′N−3 v′N−3 δ′N−3 u′N−3

. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . . 0 w′1 v′1 δ′1 u′1

0 · · · 0 w′0 v′0 δ′0


(36)
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with the entries defined by

w′k = qk+ 3
2 + q−k−

3
2 − qm − q−m v′k =

(
qk+ 1

2 − q−k− 3
2

)
s1

δ′k =
(
qk−

1
2 + q−k−

3
2

)
s2 u′k =

(
qk−

3
2 − q−k− 3

2

)
s3

and B,C are the following matrices:

B =



δM+1 − λm uM+1 0 · · · 0 0

vM δM − λm uM 0
. . .

...

wM−1 vM−1 δM−1 − λm uM−1
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . wm+3 vm+3 δm+3 − λm um+3

0 · · · 0 wm+2 vm+2 δm+2 − λm
0 · · · 0 0 wm+1 vm+1



C =


0 · · · · · · 0 wM+1 0
0 · · · 0 wM
... · · · · · · · · · · · · 0
0 · · · · · · · · · 0

 wM = wM+1 = q 1
2 + q

−1
2 − qm − q−m.

Note that the coefficient matrix of equation (35) is of the size (d + 2)× (d + 1), while there are
only d +1 variables αj to be solved. Matrix B is equal to the upper-left (M−m+1)× (M−m)
submatrix of the square matrix A − λmI , of which the entries aij , 1 � i, j � N , satisfy the
relations ai,j = (−1)i+jaN−j+1,N−i+1.

Theorem 3. For 0 � m � M , the condition of the eigenvalue �m(x) = λmx2 + qm + q−m

with a non-trivial solution Qm(x) of equation (25)L=3 is determined by the solution of
det(A − λm) = 0, where A is the matrix defined by (36). For each such �m(x), there
exists a unique (up to constants) non-trivial polynomial solution Qm(x) of (25)L=3, and the
degreeQm(x) is equal to 3M −m with Qm(0) 
= 0.

Proof. By lemma 7, one needs only to show the existence of a non-trivial solution αj of (35)
for a λm with det(A − λm) = 0. For m = M , it is obvious as there is no matrix B, and C is
zero. For m < M , with a given λm, there exists a non-trivial vector in the kernel of A− λm,

(A− λm)


α3M−m
...

...

αM−m

 = �0.
As the uj appearing in matrix B are all non-zero, by the fact that the rank of B is at most
M −m, one can extend the above αj (M −m � j � 3M −m) to a solution αj of (35). The
result then follows. �

Remark. By the above theorem, the eigenstateQm(x) is unique for a given�m(x). It implies
that for each m, the eigenvalues�m(x) and eigenstatesQm(x) of the Bethe equation (25)L=3
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are in one-to-one correspondence. Note that these Qm(x) are obtained under the constraint
of�m(x) with form (33), a conclusion by the analysis of the transfer matrix in proposition 1,
which we will refer to as the ‘physical’ criterion while comparing the usual Bethe ansatz
technique in the discussion of the next section.

6. The degeneracy and physical solution discussion of the Bethe ansatz relation

In this section, we first discuss the degeneracy relation of eigenspaces of the transform matrix

T (x) in
L⊗ CN∗ with respect to the Bethe solutions we obtained in section 5. As before,�(x)

denotes the eigenvalues of T (x). By proposition 1, the constant term of T (x) is given by

T0 = D + 1 D := q−L L⊗ Y
with the eigenvalue �(0), which is of the form ql + 1. For l ∈ ZN , we denote ElL = the

eigensubspace of
L⊗ CN∗ of the operator D with the eigenvalue ql , which is of dimension

NL−1. By lemma 5, for 0 � m � M , equation (25) describes the relation of�(x) andQ+
∗(x)

through (24) when�(0) = q2m + 1 or q2(N−m) + 1. For L = 1, T (x) is the constant q−1Y + I ,
and El1 is the eigenspace of Y for the eigenvalue ql+1. By the evaluation at the Baxter vector
|x〉+m, |x〉+N−m respectively, both the spaces, Em1 and EN−m1 , give rise to the same functional
space generated by xm(1− xNcN)Bm(x) with Bm(x) in theorem 1. For L = 2, 3, expression
(13) of T2 becomes

L = 2 T2 = q−1c0c1(X ⊗ Z + Z ⊗X)
L = 3 T2 = q−2(c0c1X ⊗ Z ⊗ Y + c1c2Y ⊗X ⊗ Z + c0c2Z ⊗ Y ⊗X) (37)

+ q−1(c0c1Z ⊗X ⊗ I + c1c2I ⊗ Z ⊗X + c0c2X ⊗ I ⊗ Z).
We shall denote by OL the operator algebra generated by the L-tensors ofX,Y,Z, I appearing
in the corresponding expression of T2. Then OL commutes with D, hence one obtains an
OL-representation on ElL for each l.

L = 2. The O2 is a commutative algebra with the generators X ⊗ Z,Z ⊗ X, and it

contains the element D (=ZX ⊗XZ). The O2-representation on
2⊗ CN∗ has the eigenspace

decomposition indexed by the (X ⊗ Z,Z ⊗ X)-eigenvalue (qi, qj ), or equivalently, the
(D,Z ⊗X)-eigenvalue (ql, qj ), where i, j, l are elements in ZN with the relation ql = qj+i .
In fact, the eigenspace is one dimensional with the basis 〈φj0,j1 | defined by〈

φj0,j1

∣∣ := 1

N2

∑
k,k′∈ZN

ωj0k+j1k
′−kk′ 〈k, k′|

where (j0, j1) is related to (i, j) by (ωj0, ωj1) = (qi, qj ). The vectors 〈φj0,j1 |, withωj0+j1 = ql,
form a basis of El2. The permutation of tensor factors of

2⊗ CN∗ induces an automorphism of
El2, which interchanges the vectors 〈φj0,j1 | and 〈φj1,j0 |. The eigenvalues of T2 are given by
c0c1(q

l−j−1 + qj−1) for j ∈ ZN , and the corresponding eigenspace is generated by 〈φj0,j1 |
and 〈φj1,j0 |, where ωj1 = qj , ωj0+j1 = ql, with the dimension equal to two for all j except
j = (M + 1)l. By (24), the index (l, j) which corresponds to (m,m′) of theorem 2 is given
by the relation

(ql, qj ) =
(
q2m, qm−m

′− 1
2

)
,
(
q−2m, q−m−m

′− 1
2

)
.

With the evaluation at the corresponding Baxter vector, 〈φj0,j1 | and 〈φj1,j0 | give rise to the
same eigenstate Bm,m′ (x) in theorem 2.
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L = 3. We have

qD = (Z ⊗X ⊗ I)(X ⊗ I ⊗ Z)(I ⊗ Z ⊗X). (38)

With the identification,

U = D−1/2Z ⊗X ⊗ I V = D−1/2X ⊗ I ⊗ Z (39)

O3 is generated by U,V which satisfy the Weyl relation UV = q2VU and the Nth power
identity. Hence O3 is the Heisenberg algebra and contains D as a central element. By (37),
qD−1/2T2 is the following Hofstadter-like Hamiltonian:

c0c1(U + U−1) + c0c2(V + V −1) + c1c2
(
qD5/2UV + q−1D−5/2V −1U−1) . (40)

Note that the above Hamiltonian is a special case of the Faddeev–Kashaev Hamiltonian HFK

with W = q−1D−5/2V −1U−1, α = β = γ = 1. Our conclusion on the sector m = M is
equivalent to that in [12] as will become clearer later on. It is known that there is a unique
(up to equivalence) non-trivial irreducible representation of O3, denoted by CN

ρ , which is of
dimension N. For each l, El3 is equivalent to N-copies of CN

ρ as O3-modules: El3 � NCN
ρ .

For 0 � m � M , we consider the space El3 with ql = q±2m. The evaluation of El3 on
|x〉+±m gives rise to an N-dimensional kernel in El3. By theorem 3, there are N polynomial
solutionsQm(x) of degree 3M −m of (25)L=3 for each of N distinct eigenvalues�m(x). The
N-dimensional vector space spanned by those Qm(x) realizes the irreducible representation
CN
ρ of the Heisenberg algebra O3.

Now we discuss the relation between the Bethe equation (25) and the usual Bethe ansatz
formulation in the literature. For the physical interest, we focus our attention only on the case
of L = 3. For 0 � m � M , a solutionQm(x) in (25)L=3 must haveQm(0) 
= 0 by theorem 3.
We write

α−1
3M−mQm(x) =

3M−m∏
l=1

(
x − 1

zl

)
zl ∈ C∗. (41)

By setting x = z−1
l in (25)L=3, we obtain the following relation among zl , called the Bethe

ansatz equation in the physical literature as in the case of usual integrable Hamiltonian chains,

qm+ 3
2

2∏
j=0

zl + cj
qzl − cj =

3M−m∏
n=1,n 
=l

qzl − zn
zl − qzn 1 � l � 3M −m. (42)

The following lemma is obvious.

Lemma 8. For a polynomialQm(x) of form (41), the Bethe ansatz relation (42) for the roots
ofQm(x) is equivalent to the divisibility of q−m

∏2
j=0(1− xcjq−1)Qm(xq

−1) + qm
∏2
j=0(1 +

xcj)Qm(xq) by Qm(x). In this situation, the quotient polynomial �(x) of the latter pair has
a degree at most 2 with �(0) = q−m + qm.

As mentioned in the remark of theorem 3, the eigenvalue of the Bethe equation (25)L=3

is described by the eigenstate Qm(x), which is a polynomial with the pre-described zeros
satisfying (42). However, the quotient polynomial �(x) in lemma 8 arising from a solution
of (42) might not be an eigenvalue �m(x) with form (33) of the Bethe equation (25)L=3, i.e.
�(x) might not necessarily be an even function. A solution of (42) with a non-even quotient
polynomial �(x) will be called a ‘non-physical’ one. For the sector m = M , there is no
non-physical Bethe ansatz solution of (42) by the following lemma.

Lemma 9. For m = M , the quotient polynomial �(x) in lemma 8 associated with a solution
of (42) is always of the form �M(x) in (33).
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Proof. By lemma 8, �(x) = ∑2
j=0 γjx

j and γ0 = q−M + qM . It suffices to show the

vanishing of γ1. We write α−1
2MQM(x) = x2M +

∑2M−1
j=0 βjx

j with β0 
= 0. By comparing the
x-coefficients of (25)L=3, one has

γ1β0 + γ0β1 = (−q−M−1 + qM)s1β0 + (q−M−1 + qM+1)β1

which implies γ1 = 0. �

With a further argument following the proof of the above lemma, one can obtain relations
(5.26) and (5.27)8 of [12], where the conclusion applies only to the M-sector. In fact, the
comparison of the x2-coefficients of (25)L=3 yields the relation

λM = (qM−1 + qM)s2 + (qM+1 − qM−1)s1β1β
−1
0 + (qM−1 + qM+2 − qM − qM+1)β2β

−1
0

whose equivalent expression is the following:

λM =
(
q
−1
2 + q

−3
2

)
s2 +

(
q

1
2 − q −3

2

)
s1

2M∑
n=1

zn +
(
q

3
2 + q

−3
2 − q 1

2 − q −1
2

)∑
l<n

zlzn. (43)

With the substitution, µ = q
1
2 c−1

0 , ν = q
1
2 c−1

1 , ρ = q
1
2 c−1

2 , expressions (42)m=M and (43)
coincide with (5.26) and (5.27) in [12]. By lemma 9, the Bethe ansatz relation (42) is shown to
be equivalent to the Bethe equation (25)L=3 for the M-sector. However, the parallel statement
is not true for the sector m = M − 1; in fact, there do exist some ‘non-physical’ Bethe ansatz
solutions to (42). An obvious example is given by the following one. By 3M −m = N , the
collection of inverse of roots of xN − β = 0 (β 
= 0) forms a solution of the Bethe ansatz
equation (42), and its associated quotient polynomial �(x) in lemma 8 is given by

�(x) =
(
q−

3
2 + q

3
2

)
+
(
q−

3
2 − q 1

2

)
s1x +

(
q−

3
2 + q−

1
2

)
s2x

2

which is not an even polynomial, required by the solutions of equation (25). This shows
that the inverse of roots of xN − β = 0 for β 
= 0 provides a ‘non-physical’ solution of the
Bethe ansatz equation (42). By the above example, constraint (33) on the eigenvalue �m(x)

should be taken into account in the discussion of the Bethe ansatz solutions of (42) for the
spectrum problem of the transfer matrix in an arbitrary sector. Such a consideration will
become more crucial when the problem of thermodynamic flux limit procedure is involved in
the next section.

7. The rational Bethe equation for a generic q

In this section, we study the rational Bethe equation for a generic q. In particular for |q| = 1,
it is the infinity flux limit discussion, i.e. N → ∞, of the models appeared in the last two
sections. In the discussion of this section, q will always mean a generic one. By using
formula (2), one has the canonical representation on C∞ of the Weyl algebra generated by
Z,X with the relation

ZX = q2XZ Y := ZX.
With �h ∈ (P3)L, one defines the transfer matrix T�h(x) as in the finite N case, and then discusses
its spectrum�(x). Under the degenerating assumption (14), the method of the previous three
sections can be applied equally to reduce the diagonalization problem of the transfer matrix
to the Bethe solutions of equation (25). It is important to note that the form of (25) is valid
for all finite N while keeping the size L fixed. This enforces us to use the same form of the
8 The M in our paper is denoted by P in [12].
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Bethe equation for a generic q as that in the finite N case, so that the formulation becomes
compatible with the infinity N limiting process. An eigenvalue of the transfer matrix, the same
for the Bethe equation, should be the generic analogy of�(x) appeared in the first relation of
(24), now denoted by �̃m(x) = qm�m(x); however, for the eigenstate of the Bethe equation,
we will keep the infinity N version of Qm(x) in (25). The Bethe equation for a generic q for
m ∈ Z�0 is now described by

�̃m(x)Qm(x) =
L−1∏
j=0

(
1− xcjq−1

)
Qm(xq

−1) + q2m
L−1∏
j=0

(1 + xcj )Qm(xq) (44)

where �̃m(x) is an even polynomial of degree �2[L2 ] with �̃m(0) = q2m + 1, and Qm(x) is a
formal (power) series of x, i.e.

Qm(x) =
∑
j�0

αjx
j , ∈ C[[x]].

As in the discussion of the last two sections, we make a similar analysis on solutions of (44)
for L � 3. For L = 1, �̃m(x) = q2m + 1, and Bm(x) in theorem 1 defines a formal series,
which becomes the basis of the solution space of (44)L=1. Note that the description of �̃m(x)

is consistent with the spectrum of the operator Y. For L = 2, 3, by expression (37) of T2, we
have the operator algebra OL as before, in which T0 is a central element.

L = 2. Equation (44)L=2 is equivalent to the linear systems (29) of αj , where the
coefficients of the equations are defined by (32). By theorem 2, the eigenvalue �̃m(x) is
given by

�̃m,m′(x) =
(
qm+m′− 1

2 + qm−m
′− 5

2

)
x2s2 + q2m + 1 m′ ∈ Z�0.

Form,m′ ∈ Z�0, the solutionsQm(x) of (44)L=2 form a one-dimensional space generated by
an element Bm,m′ (x) ∈ C[[x]] with Bm,m′ (0) = 1. Note that the algebra O2 is commutative,

and the spectra of the O2-representation
2⊗ C∞∗ give rise to the eigenvalues of T (x), which

coincide with the above λ̃m,m′ (x) form,m′ ∈ Z�0.
L = 3. We consider the operator qD−

1
2 T2, which is the Hamiltonian (40). For the sector

m, its eigenvalue is given by q1−m̃λm, where λ̃m is related to the polynomial �̃m(x) by

�̃m(x) = λ̃mx2 + q2m + 1.

With λm := q−m̃λm, λm form the spectra of the quadric-diagonal square matrix A (36)
for a generic q, which is now of the infinity size as M increases to ∞. For each λ̃m,
equation (44)L=3 of Q(x) is equivalent to system (34). It is easy to see that there exists a
unique solution Qm(x) (up to a constant) by the generic property of q. Note that the same
conclusion of Qm(x) holds equally for an arbitrary complex number λ̃m, including those not
in the spectra of A. This means that solutions of equation (44)L=3 alone contain, but not
sufficiently determine, the eigenvalues of the transfer matrix T (x). Those λ̃m not from the
spectra of A correspond to the non-physical Bethe ansatz solutions of the finite N case, as
discussed in the previous section.

8. High genus curves and the Hofstadter model

We are now going back to the general situation in section 3. Note that the values ξNj of the
curve C�h in (8) are determined by ξN0 and xN . Denote

y = xN η = ξN0 .
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The variables (y, η) define the curve

B�h : C�h(y)η
2 + (A�h(y)−D�h(y))η − B�h(y) = 0 (45)

where the functions A�h, B�h, C�h,D�h of y are the following matrix elements:(−A�h(y) B�h(y)
C�h(y) −D�h(y)

)
:=

L−1∏
j=0

(−aNj ybNj

ycNj −dNj

)
.

Note that B�h is a double cover of y-line, and C�h is a (ZN)L+1-branched cover of B�h. The
automorphisms τ± generate a covering transformation group of C�h over B�h. In this section we
shall only consider the case

L = 3 a0 = d0 = 0 b0 = c0 = 1

and we assume the variables h1, h2 to be generic. The expression of T (x) is given by

T (x) = x2(c1a2X ⊗ Z ⊗ Y + a1b2Z ⊗ Y ⊗X + b1d2Z ⊗X ⊗ I + d1c2X ⊗ I ⊗ Z)
equivalently, x−2D−

1
2 T (x) is equal to the Hofstadter Hamiltonian (1) withU,V given by (39)

and µ, ν, α, β related to h1, h2 by

µ2 = qb1c1a2d2 α2 = q−1b1c
−1
1 a−1

2 d2

ν2 = qa1d1b2c2 β2 = q−1a−1
1 d1b

−1
2 c2.

The curve B�h is defined by (45) with

A�h(y) = −y2
(
cN1 a

N
2 + dN1 c

N
2

)
B�h(y) = y

(
y2cN1 b

N
2 + dN1 d

N
2

)
C�h(y) = y

(
y2bN1 c

N
2 + aN1 a

N
2

)
D�h(y) = −y2

(
aN1 b

N
2 + bN1 d

N
2

)
.

By factoring out the y-component, we consider only the main irreducible component of B�h,
denoted by

B :
(
y2bN1 c

N
2 + aN1 a

N
2

)
η2 +

(
aN1 b

N
2 + bN1 d

N
2 − cN1 aN2 − dN1 cN2

)
yη − (y2cN1 b

N
2 + dN1 d

N
2

) = 0

(46)

which is a double-cover of y-line with four branched points, hence it defines an elliptic curve.
For the curve C�h, the variables ξ0 and ξ1 are related by ξN0 = ξ−N1 . This implies that C�h
consists of N irreducible components, each one is isomorphic to the same curve W defined by
the equations in the variable p = (x, ξ0, ξ2),

W : ξ−N0 = −ξ
N
2 a

N
1 + xNbN1

xNξN2 c
N
1 − dN1

ξN2 =
−ξN0 aN2 + xNbN2
xNξN0 c

N
2 − dN2

.

It is easy to see that W is anN3-fold (branched) cover of the elliptic curve (46), and the genus
of W is 6N3−6N2 +1. We shall label the irreducible components of C�h by s ∈ ZN and denote
the elements of C�h by (p, s) with p ∈ W , whose ξ1-coordinate is given by ξ0ξ1 = q2s−1.
Relation (10) now becomes

T (x)|p, s〉 = |τ−(p), s − 1〉q2s−1−(p) + |τ+(p), s − 1〉q2s+(p)

where τ± are transformations of W defined by (9), with the coordinates only involving
(x, ξ0, ξ2), and ± are the following functions on W :

−(p) = −xξ−1
0 (xξ2c1 − d1)(xξ0c2 − d2)

+(p) = xξ2
(a1d1 − x2b1c1)(a2d2 − x2b2c2)

(ξ2a1 − xb1)(ξ0a2 − xb2)
p = (x, ξ0, ξ2) ∈W .
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By averaging the vectors |p, s〉 over an element p of W , one defines the following Baxter
vector on W :

|p〉 := 1

N

N−1∑
s=0

|p, s〉qs2
.

The action of the transform matrix T (x) on |p, s〉 can be descended to the Baxter vector of W
as follows:

x−2T (x)|p〉 = |τ−(p)〉̃−(p) + |τ+(p)〉̃+(p) (47)

where ̃± are the functions of W ,

̃−(x, ξ0, ξ2) = (xξ2c1 − d1)(xξ0c2 − d2)

−xξ0

̃+(x, ξ0, ξ2) = ξ2(a1d1 − x2b1c1)(a2d2 − x2b2c2)

x(ξ2a1 − xb1)(ξ0a2 − xb2)
.

By the following component expression of the Baxter vector on C�h,

〈k0, k1, k2|p, s〉qs2 = q(s−k0−k1)
2
q−2k2

0−2k0k1−k2
1 +k1

k1∏
i=1

ξ0(−ξ2a1ω
i + xb1)

ξ2xc1ωi − d1

k2∏
j=1

−ξ0a2ω
j + xb2

ξ2(ξ0xc2ωj − d2)

the Baxter vector on W is given by

〈k0, k1, k2|p〉 =
∑N−1

n=0 q
n2

N
q−2k2

0−2k0k1−k2
1 +k1

k1∏
i=1

ξ0(−ξ2a1ω
i + xb1)

ξ2xc1ωi − d1

k2∏
j=1

−ξ0a2ω
j + xb2

ξ2(ξ0xc2ωj − d2)
.

(48)

Note that kj in the above formula are integers modular N. Each product term on the right-hand
side means the one for a positive integer kj representing its class in ZN . For an eigenvector 〈ϕ|
in

3⊗ CN∗ of the operator x−2T (x) with the eigenvalue λ, by (47), the functionQ(p) := 〈ϕ|p〉
of W satisfies the following Bethe equation:

λQ(p) = Q(τ−(p))̃−(p) +Q(τ+(p))̃+(p) λ ∈ C. (49)

The above equation possesses a Z2-symmetry with respect to the following involution of W :

σ : W −→ W p = (x, ξ0, ξ2) �→ σ(p) = (−x,−ξ0,−ξ2).

In fact, the commutativity of σ and τ±, and the σ -invariant property of ̃±(p) are easily seen.
Then by (48), the Baxter vector |p〉 is invariant under σ , i.e. |p〉 = |σ(p)〉 for p ∈ W , which
implies that Q(p) is a σ -invariant function. Furthermore, the rational function Q(p) has the
poles contained in the following divisor:

ξN−1
N−1∏
i=1

(ξ2xc1ω
i − d1)(ξ0xc2ω

i − d2) = 0.

In particular, it is regular at x = 0,∞. Note that the finite values of Q(p) at x = 0,∞ are
consistent with the asymptotic values of ̃± at x = 0,∞ in equation (49),

̃±(x, ξ0, ξ2) = ±x−1ξ−1
0 d1d2 +O(1) as x → 0

̃±(x, ξ0, ξ2) = ±xξ2c1c2 +O(1) as x →∞.
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With the x-coordinate, W is a 2N2-cover over the x-line, unramified at points over x = 0,∞
whose (x, ξ0, ξ2)-coordinates are given by

0±i,i′ = ±
(

0, qi

√
d1d2

a1a2
, qi

′

√
d1a2

a1d2

)
(50)

∞±i,i′ = ±
(
∞, qi

√
c1c2

b1b2
, qi

′

√
c1b2

b1c2

)
i, i ′ ∈ ZN .

Consider the D-eigenspace decomposition of
3⊗ CN∗ =⊕l∈ZN El3 in section 6. The evaluation

on the Baxter vector of W gives rise to the following linear transformation:

εl : El3 −→ {rational functions of W} v �→ εl(v)(p) := 〈v|p〉 for l ∈ ZN .

Theorem 4. For l ∈ ZN , the linear map εl is injective, hence it induces an identification of
El3 with an N2-dimensional functional space of W .

Proof. Define the following vectors in
3⊗ CN∗:

〈
ψk0,k1,k2

∣∣ = (N−1∑
n=0

qn
2

)−1 ∑
k′∈ZN

ωk1k
′ 〈k0, k

′, k2|
〈
φj0,j1,j2

∣∣ = ∑
k∈ZN

q2k(−j0+j1+j2)−k(k−1)
〈
ψj1−k,k,j2−k

∣∣
where ki, ji ∈ ZN . We have〈

ψk0,k1,k2

∣∣Z ⊗X ⊗ I = ωk0+k1
〈
ψk0,k1,k2

∣∣〈
ψk0,k1,k2

∣∣X ⊗ I ⊗ Z = ωk2
〈
ψk0−1,k1,k2

∣∣〈
ψk0,k1,k2

∣∣ I ⊗ Z ⊗X = 〈ψk0,k1+1,k2−1

∣∣ .
By (38), one has〈
ψk0,k1,k2

∣∣D = q−1+2(k0+k1+k2)
〈
ψk0−1,k1+1,k2−1

∣∣ 〈
φj0,j1,j2

∣∣D = q−1+2j0
〈
φj0,j1,j2

∣∣ .
For a given l ∈ ZN , let j0 be the element in ZN defined by ql = q−1+2j0 . Then the vectors〈
φj0,j1,j2

∣∣ with j1, j2 ∈ ZN form a basis of El3. By (48), we have

〈
ψk0,k1,k2

∣∣p〉 = N−1q−2k2
0

∑
k′∈ZN

q−k
′2+(2k1−2k0+1)k′

k′∏
i=1

ξ0(−ξ2a1ω
i + xb1)

ξ2xc1ωi − d1

k2∏
j=1

−ξ0a2ω
j + xb2

ξ2(ξ0xc2ωj − d2)

hence〈
φj0,j1,j2

∣∣p〉 = N−1q−2j2
1

∑
k,k′∈ZN

q−3k2+k(−2j0+6j1+2j2+1)−k′2+4k′k+(−2j1+1)k′

×
k′∏
i=1

ξ0(−ξ2a1ω
i + xb1)

ξ2xc1ωi − d1

j2−k∏
j=1

−ξ0a2ω
j + xb2

ξ2(ξ0xc2ωj − d2)
.

Set p = 0±i,i′ defined in (50). By the relations of their (ξ0, ξ2)-coordinates, ξ0ξ2a1d
−1
1 = qi+i

′
,

ξ0ξ
−1
2 a2d

−1
2 = qi−i

′
, we obtain〈

φj0,j1,j2

∣∣ 0±i,i′
〉 = N−1q−2j2

1 +j2
2 +j2(1+i−i′) ∑

k,k′∈ZN

q−2k2+k(−2j0+6j1−i+i′)qk
′(−2j1+2+i+i′+4k)

= qj0(1−j1)−2j1+
j2
1
2 +j2+j2

2 +−j1(3i+i
′ )+2j2(i−i′ )

2 + j0(i+i
′ )

2 − (i+i′+2)(−i+3i′+2)
8
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hence

qj0(−1+j1)+2j1− j2
1
2 −j2−j2

2
〈
φj0,j1,j2

∣∣ 0±i,i′
〉
q
(i+i′+2)(−i+3i′+2)−4j0 (i+i

′ )
8 = q i(−3j1 +2j2)−i′ (j1 +2j2)

2 . (51)

As the correspondence, (j1, j2) �→ (−3j1 + 2j2,−j1− 2j2), defines an automorphism of Z2
N ,

relation (51) gives rise to an isomorphism between El and the space of Baxter vectors 0+
i,i′

(or equivalently 0−i,i′ ). This implies the injectivity of εl. �

From the discussion in section 6, El3 is equivalent to N copies of the standard representation
as the Heisenberg algebra O3-modules. Hence by theorem 4, there exists an O3-module
structure on εl

(
El3
)
, inherited from the representation space El3. The mathematical structure of

the functional space εl
(
El3
)

by incorporating the divisor theory of Riemann surfaces into the
Heisenberg algebra representation remains an algebraic geometry problem for further study.

9. Conclusions and perspectives

We follow the framework in [12] by the quantum integrable method to study the diagonalization
problem of some Hofstadter-like models. Through the Baxter vector of the spectral curve, the
study of diagonalizing a Hamiltonian with a rational magnetic flux is reduced to the problem of
a certain ‘Strum–Liouville-like’ difference equation on the curve, called the Bethe equation of
the associated model. The spectral curve has in general, a large genus, and the relations among
zeros and poles for a solution of the Bethe equation yield a system of algebraic equations.
Such systems of relations among zeros of the Bethe polynomial solution on a rational spectral
curve are usually referred to the Bethe ansatz equation in the literature. For certain models
of physical interest, e.g., the Hofstadter Hamiltonian (1), the study of the high genus spectral
curve is a necessary step in solving the spectrum problem through the algebraic Bethe ansatz
technique. In this paper, we clarify some finer mathematical manipulations in [12], then
go through all the delicate points one must consider in order to obtain the explicit Bethe
solutions. A careful analysis of the mathematical nature of the Bethe equation reveals the
vital role of algebraic geometry in a thorough understanding of the Bethe ansatz method,
as is the need to obtain the physical answer of the associated model. For this reason, we
have examined, in this paper, the Bethe ansatz equation in the context of algebraic geometry,
even in the degenerated rational spectral curve case in order to gain mathematical insight
into the Bethe equation. We further extend the approach to some more general situations.
Above all, we have endeavoured to present a clear and self-contained account of the theory,
and hope to have elucidated the mathematical structure of the Bethe-ansatz-style method in
the physical literature. The main content of this paper is in the discussions after section 5,
where the detailed mathematical derivation and analysis comparable to physical considerations
are presented. The topics between sections 4 and 7 are devoted to the degenerated case, where
the Bethe equations are related to models with the rational spectral curve. With an explicit
gauge choice, we have conducted the mathematical investigation of the Bethe equation and
obtained the complete Bethe solutions for all sectors in section 5. With these mathematical
results, we are able to further advance the study of the relevant physical problems, namely, the
‘degeneracy’of eigenstates of the transfer matrix to the Bethe solutions and the thermodynamic
limit discussion in sections 6 and 7. Furthermore in section 6, the explicit calculation we have
performed for the Bethe solutions, when specializing on one particular sector, provides results
parallel to those using the usual Bethe ansatz method in [12]. Meanwhile, the finding of
some non-physical Bethe ansatz solutions in other sectors supports the justification for our
approach to the problem. The method we employ here can be applied equally well to any
number of size L. However, to keep things simple, we restrict our attention in this paper only
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to the case L � 3 in the discussion of Bethe solutions; the analyses on L = 1, 2 are made
mainly for mathematical purpose to pave the way for discussing the models with a higher size
L. The Hofstadter-like model is related to L = 3, of which the Bethe ansatz equation has been
mathematically discussed in detail here. For L = 4, it is expected that the problem would
be closely related to the discrete quantum pendulum by the works of [9, 18]. The results we
have obtained in this paper through the Bethe equation approach strongly indicate a promising
direction to the spectra problem of other models, e.g. the discrete quantum pendulum. For
the thermodynamic limit discussion, the analysis in section 7 on the special Hofstadter-like
Hamiltonian (40) for a generic q shows that the Bethe relation on the spectrum and eigenstates
we proposed are in accordance with the diophantine approximation process of an irrational flux.
The comparison of our Bethe ansatz method with the C∗-algebra approach of semiclassical
analysis employed in [6] for the multifractal spectrum structure is a fascinating problem. We
plan to address the question of such a program elsewhere.

For the original Hofstadter model (1), the Bethe equation is formulated as a ‘difference’
equation of functions on a high genus spectral curve. In section 8, we have made a primary
investigation on its solutions. As the spectral curve is a Galois Abelian cover of an elliptic
curve with the covering group determined by the order N of the rational flux, it would be
essential to have a detailed algebraic geometry study of such a high genus curve in accordance
with the Bethe solutions, so that the base elliptic curve and the classical elliptic functions could
be engaged in the theory. With our finding in the rational spectral curve case as guidance for
some appropriate direction of calculation, the analysis we have made in this paper will serve
as a basis for further study of the Hofstadter model through the elliptic curve techniques in
algebraic geometry. This approach would allow us to follow a similar path as in the rational
spectral curve case for the study of the spectrum problem of the Hofstadter model. This
rich structure requires further study, and a scheme along this line of interpretation is under
current investigation. Indeed, we hope that our efforts would eventually shed new light on
the role of algebraic geometry in exactly solvable integrable models. In this paper, we restrict
our attention only to certain Hofstadter-like models, and leave possible generalizations and
applications to future work.
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Fasc. 4, Mémoire 34 1–113
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